Magnetic Fields from Wires

A wire with current flowing through it will create a magnetic field around it, to remember the direction of this field we use the

Often we will represent a current carrying wire as though you were looking at it end on. In this case we simply draw it as a circle. To indicate the direction of current flow we draw a X if it is in to the page and a ____ if it is out of the page.

Fill in the following with the direction of the magnetic field

Physics 12 Booklet #4

Example: Fill in the following with the direction of the magnetic field

Example: Determine the direction current is flowing in the following wires given the magnetic field generated by them.

solenoids: electionagnet

The many loops all carry current which each add to the Just as with a bar magnet a solenoid has North and Sorth poles

The 2nd Right Hand Rule:

Fingers: direction of Thumb: North pole

Current in Solenoid

The magnetic field outside of a solenoid is Weak and Non-Unitary

However the magnetic field inside the solenoid is strong and fairly

Inside a solenoid we can approximate the strength of the field using the following equation. It is only perfectly true if the _______ of the solenoid is much greater than its _______, but is an acceptable approximation otherwise:

 $\beta = \mu_o I \Lambda$

Example: A hollow solenoid is 25 cm long and has 1000 loops. If the solenoid has a current of 9.0 A what is the magnetic field in the solenoid?

0.25M

$$\beta = \mu_0 T_n = \mu_0 T_{\frac{N}{2}} = (4\pi \times 10^{-7})(9.0)(\frac{1000}{0.25})$$

$$= 0.045 T$$